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Annual Progress Report 3/1/07-2/29/08 
DoD Era of Hope Scholar Award 
Immunology, Systems Biology, and Immunotherapy of Breast Cancer 
Peter P. Lee, M.D. 
Stanford University 
 
 
INTRODUCTION 
Breast cancer patients with similar tumor characteristics may have vastly different clinical 
courses, response to therapy, and outcome. Several lines of evidence now suggest that the 
host immune response may play a significant role in modulating disease progression in 
cancer. A complex interplay exists between the host immune response and tumor cells as a 
critical determinant in clinical outcome. These factors remain poorly understood. By 
comprehensively studying the dynamics between breast cancer and the immune response 
using an integrative systems approach, we hope to uncover opportunities for vastly different 
immunotherapy approaches than what are available today. We seek to move beyond the 
current paradigm of eliciting immune responses against defined antigens via vaccination, as 
this strategy alone does not appear to be effective in a number of clinical trials for melanoma 
and other cancers. Rather, we seek strategies that specifically modulate tumor-immune cell 
interactions and block cancer-induced immune dysfunction on a systemic and local level (at 
tumor sites and draining lymph nodes). In this project, we use a number of novel 
immunological approaches to look for evidence of immune cell dysfunction within the tumor 
or tumor-draining lymph nodes (TDLNs) from breast cancer patients. This includes archived 
samples from patients with at least five year survival data, and fresh samples from newly 
diagnosed patients. We use DNA microarrays to analyze the gene expression patterns of 
purified tumor and immune cells, focusing on gene networks and cross-talk between tumor 
and immune cells. We generate high-resolution images of tumor and TDLN sections and 
develop image analysis algorithms to assess the spatial arrangement and grouping of tumor 
and immune cells with respect to each other that may have biological significance. Using 
statistics and mathematical tools, we will integrate the complex data generated from all of 
these studies and correlate them with clinical parameters. Lastly, our observations will be 
combined into a mathematical model that will enable us to perform in silico experiments to 
quickly test novel therapeutic strategies for breast cancer. This work may lead to novel 
diagnostic tools to help predict clinical outcome and guide therapy in breast cancer patients. 
We also hope to find new insights into the mechanisms of immune evasion by breast cancer 
cells and ultimately new treatment strategies for breast cancer directed specifically at altering 
the biology of TDLNs. 
 
BODY 
After the first year of intense infrastructure building, the second year of this award yielded 
early progress in multiple areas of this project that will be described in more detail below. 
Our team currently consists of two excellent research associates, two PhD postdoctoral 
fellows, and one graduate student. This represents the full complement of personnel that can 
be supported by this award. As will become clear, vast amounts of data are being generated in 
this project. A third PhD postdoctoral fellow with expertise in bioinformatics, data integration 
and analysis would greatly enhance the overall project and help us to achieve faster and more 
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results. We work closely with our surgery and pathology colleagues to identify, recruit, and 
consent subjects, and to obtain samples from the operating room to pathology and eventually 
to my laboratory. We continue to refine our protocols to maximize recovery of immune cells 
from tumor and lymph node specimens, and to optimize methods for analysis of fresh and 
archive samples by flow cytometry, immunohistology, immunoflourescence, function assays, 
and DNA microarray analysis. Below is a summary of our progress in relation to my 
proposed SOW. 
 
Experiment Strategy 
To fully understand tumor-immune cell interactions in breast cancer, our strategy is to 
compare the immune cells and tumor cells within three distinct compartments: the tumor, 
tumor-draining lymph nodes (TDLNs), and blood. We approach this at both the molecular 
and cellular levels. At the molecular level, gene expression profiling of immune cells and 
tumor cells within the tumor site and TDLNs are being carried out. At the cellular level, 
immunologic functions of immune cells are being studied and compared across these three 
compartments.  

 
A. Immunological Analyses 
 

Originally proposed in the SOW: 
1. Analysis of archived samples of tumor and TDLN from breast cancer patients with 
at least 5 years of clinical follow-up data. Tumor and immune cell markers will be 
identified via immunohistochemical (IHC) staining and in-situ hybridization (ISH). 
Images will be acquired in high resolution using an automated imaging system 
(BLISS), and data will be acquired using automated software. Over 50 immune and 
tumor markers will be assessed. To facilitate these complex studies, we will also 
explore the use of tissue microarrays (TMA). This would enable us to analyze sections 
from 100-400 samples on each slide. We will first perform a pilot study to ensure that 
the TMA method is compatible for our studies and would not be negatively impacted 
by the architectural heterogeneity within TDLN. (months 0-60) 
2. Analysis of live cells from fresh tumor, TDLN, blood, and possibly bone marrow 
from newly diagnosed or relapsed breast cancer patients undergoing surgery or 
treatment. Assays include flow cytometry (up to 12 colors), peptide-MHC tetramer 
analysis, sorting, functional responses (e.g. cytotoxicity, cytokine release, anergy, 
apoptosis, proliferation), and others. (months 6-60) 
3. Generation of T cell lines and tumor cell lines from fresh tumor and TDLN samples 
for further detailed analyses. (months 6-60) 
4. If the above studies demonstrate immune cell dysfunction within tumor or TDLN, 
but by themselves do not reveal any definitive mechanisms, then we will undertake in 
vivo studies with mouse models of de novo breast cancer to address the early events 
in immune dysfunction. (months 24-60) 

 
Sample Acquisition 
At the end of year 2, a total of 93 breast cancer patients have been enrolled into this study. All 
subjects were newly diagnosed without a history of any immune disorder prior to breast 
cancer diagnosis and had their surgical treatments at Stanford University Medical Center. 
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Written informed consent has been obtained from all participants according to Stanford IRB, 
DoD HSRRB, and HIPAA regulations. Patients’ heparinized peripheral blood samples, breast 
tumor tissue, tumor draining lymph node (TDLN: non-sentinel lymph node and/or sentinel 
lymph node aspirates) have been collected for this study. Clinical data (stage, grade, 
ER/PR/Her-2/neu status) for each participant has been recorded without patient identifying 
information. 
 
Sample Processing 
1. Pilot study 
Since we seek to compare gene expression profiles of cells across three anatomic 
compartments, which require different sample processing procedures, it is important to 
minimize influences from different sample processing protocols, particularly the conditions 
we use to process the breast tissue. Therefore a pilot study using several healthy donor 
PBMCs was performed to determine the potential influence of various sample processing 
procedures (Ficoll-Hypaque density gradient centrifugation, red blood cell lysis treatment, 
cryopreservation, dissociation enzyme digestion, and overnight culture) on gene expression. 
Immune cells were processed accordingly and quantitative real-time PCR (qPCR) was used to 
check for gene expression changes of housekeeping genes. Two housekeeping genes 
(GAPDH and YWHAZ), which are stably expressed in immune cells, were used for this 
purpose. In addition, changes of cell surface marker expression, proliferation capability and 
cytokine profile were determined. A sample processing procedure with minimal influences on 
gene expression, cell surface marker expression, cell proliferation capability and cytokine 
profile was selected.  
 
2. Peripheral blood immune cell isolation 
Immune cells from peripheral blood are separated by Ficoll-Hypague density gradient 
centrifugation. RBC lysis buffer treatment is used to remove residual red blood cells and to 
ensure an accurate counting using hemocytometer. A total of 1 million isolated immune cells 
are preserved in Trizol (Invitrogen) for RNA isolation and the remaining cells are 
cryopreserved in liquid nitrogen until further use.   
 
3. Breast Tissue dissociation and immune cell/tumor cell isolation 
Immediately after surgery, breast tumor tissues are minced and dissociated with type III 
collagenase and DNase I for 1-2 hour to generate single cell suspensions. The cells are then 
stained with cell surface marker listed in Table 1. The two major cell populations in breasts 
tumor tissue - immune cells (CD45+ESA-CD140β-), epithelial/tumor cells (ESA+CD45-

CD140β-) - are purified via FACS sorting. Up to 1 million sorted immune cells or tumor cells 
are preserved in Trizol for RNA isolation and the remaining cells are cryopreserved in liquid 
nitrogen until further use. To ensure the breast tissue specimen does indeed contain tumor 
cells, the tumor tissue is bisected, and submitted for histological processing using 
hematoxylin and eosin staining, and examined by a pathologist specializing in cytology.  
 
4. TDLNs 
Immediately after lymph node dissection, fine-needle aspirates of sentinel lymph nodes are 
collected. For non-sentinel lymph nodes, half of each node is excised and minced to generate 
single cell suspensions. For grossly tumor involved lymph nodes, the minced specimen is 
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subjected to enzymatic dissociation with type III collagenase and DNase I. A multicolor flow 
cytometry panel is used to stain cells from TDLNs.  Immune cells and/or tumor cells are 
purified through FACS sorting. Up to 1 million isolated immune cells or tumor cells are 
preserved in Trizol for RNA isolation and the remaining cells are cryopreserved in liquid 
nitrogen until further use. 
 

Table 1. Four Color Flow Cytometry Panel for Sorting 
Cells/Subsets of Interest Surace marker 
epithelial/tumor cells epithelial specific antigen (ESA) 
fibroblast cells CD140β 
immune cells 
(lymphocytes/monocytes/granulocytes) CD45 
dead cell exclusion marker ViVID 

 
Flow cytometry-based functional assays of lymphocytes 
To assess the basic immunologic functions of human lymphocytes, we proposed to develop 
flow cytometry-based functional assays to measure proliferative responses and Th1/Th2 
cytokine production of lymphocytes.  
 
Cytokine profile 
Freshly isolated immune cells were stimulated with phorbol esters/Ionomycin for 20 hour and 
protein transport inhibitor monensin was added to accumulate cytokine in the Golgi complex 
to enhance the detections of cytokine producing cells. The surface markers used for 
phenotype characterization include ESA-FITC, CD45-PE Cy7, CD19-APC, CD3-PerCP, 
CD8-PE AF700 and dead cell exclusion marker ViVID. The intracellular cytokine expression 
and phenotype characterization of cells were analyzed on a FACSAria (BD). Isolated immune 
cells from tumor free lymph nodes (n=18), tumor involving lymph nodes (n=5) and 
peripheral blood (n=2) were evaluated for their ability to produce type 1 cytokine (IL-2, 
IFNγ) and type 2 cytokine (IL-4, IL-10, TGFβ). The majority of cytokines synthesized by 
CD8+ T cells, CD4+ T cells and B cells is classified as type 1 cytokines, i.e. IL-2, IFNγ. Type 
2 cytokine (IL4/IL10/TGFβ) was not detectable (<1% positive in all cases). Although the 
sample size is small, there is no significant difference in the cytokine biosynthesis between 
tumor free/tumor involved nodes and peripheral blood. No significant difference is observed 
in different stages of the disease. To evaluate the influence of tumor cells on cytokine 
production, the cytokine profiles of immune cells for tumor involving nodes were also studied 
before and after depletion of the tumor cells. There is no difference observed. Thus far the 
information obtained through intracellular cytokine staining is limited to IL-2, IFNγ. 
Therefore we decide to employ a different strategy to investigate the cytokine profiles, which 
can be combined with the CFSE-based proliferation assay.  
 
CFSE-based proliferation assay 
A 9 color, 11 parameter flow cytometry panel was developed for the CFSE-based 
proliferation assay. In brief, freshly isolated immune cells were labeled with CFSE followed 
by stimulation with phorbol esters/Ionomycin for 115hour. The supernatant of the cultured 
cells was collected and stored at -80°C for multiplex analysis of the cytokines produced 
during culture. The stimulated/unstimulated cells were stained with CD45-PE Cy7, CD19-PE 
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TR, CD3-AF700, CD8-APC Cy7, CD86 PE AF700, ViVID and analyzed on a FACSAria 
(BD). So far we have analyzed a total of 25 patient samples, which include immune cells 
from 16 tumor free lymph nodes, 7 tumor involving lymph nodes and 2 peripheral blood 
samples. Apart from these, we also analyzed 5 control peripheral blood samples from healthy 
donors. It seems that lymphocytes from lymph nodes (regardless of tumor involvement) have 
less capability to proliferate compared with lymphocytes from peripheral blood (Figure A1). 
Studies with mice showed similar lymphocytes proliferation capability between lymph node 
and blood (Data not shown), suggesting a decreased proliferating capability of lymphocytes 
in breast cancer lymph nodes. Paired peripheral blood lymphocytes for these lymph node 
samples were cryopreserved and will be analyzed in a batch to increase the sample size and 
allow comparison of proliferation capability of lymphocytes in the same individual.  
 
It has been shown that B cells in the lymph nodes are potent antigen presenting cells and 
antigen presentation by resting B cells can induce T cell tolerance in vivo (Rodríguez-Pinto 
D. et al, 2005). Therefore we included CD86 in this assay to study the antigen presentation 
function of B cells. The expressions of CD86 on B cells are significantly decreased in breast 
cancer patients (peripheral blood, tumor free lymph nodes, tumor involving lymph nodes) 
compared with control peripheral blood (p=0.0046). Upon activation, the upregulation of 
CD86 expressions are similar between patients and controls (Data not shown).  
 
 
Interferon Signaling Defect in Lymphocytes from Breast Cancer Patients 
We recently demonstrated that IFN signaling is impaired in peripheral blood lymphocytes 
from melanoma patients (Critchely-Thorne, et al). To determine whether a similar immune 
defect arises in breast cancer patients, we assessed the functional response of peripheral blood 
lymphocytes from breast cancer patients (as compared to age-matched healthy controls) by 
phosflow analysis (detection of STAT1-pY701) upon stimulation with IFN-α and IFN-γ. In 
addition, we included different subsets of cells, such as T regs, NK cells, and naïve, effector, 
memory T cells. Data was analyzed using Wilcoxon-Mann-Whitney test (95% CI) in a 
statistical application, R, to calculate the exact p-values for each of the comparisons. P-values 
of < 0.05 were considered significant.  
 
Our healthy controls were composed of both males and females, so we first determined 
whether samples from different sexes were statistically different from each other before we 
compared the complete healthy population to breast cancer patients (all female). We found 
that fold induction of STAT1-pY701 was not statistically different between male and female 
healthy controls for both IFN-α and IFN-γ stimulation (Figure A2 and A3, respectively), and 
therefore, we included all healthy patients in our analysis. 
 
Fold induction of STAT1-pY701 was significantly reduced in breast cancer patients 
compared to healthy controls in response to IFN-α stimulation in lymphocytes, T cells, B 
cells, NK cells, and T reg cells (Figure A4). In contrast, the fold induction of STAT1-pY701 
in response to IFN-γ stimulation in T cells, NK cells, and T reg cells was not significant. 
However, IFN-γ stimulation of B cells showed a profound reduction of STAT1-pY701 
(Figure A5). The lymphocyte population for IFN-γ stimulation in Figure A5a shows a 
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significant decrease in the fold induction of STAT1-pY701, however, this is most likely a 
reflection of the reduction of STAT1-pY701 of B cells.  
 
To determine if the reduced fold induction of STAT1-pY701 may be classified by breast 
cancer stage, we separated the breast cancer patients by stage. The reduced fold change in 
STAT1-pY701 in response to IFN-α or –γ was equally observed in stages II, III and IV breast 
cancer patients for lymphocytes, T cells, B cells, NK cells, and/or Treg cells (Figure A6 and 
Figure A7, respectively). Interestingly, the reduced fold change in IFN-γ-stimulated B cells 
was quite significant in all stages of breast cancer. P-values were not generated for both IFN-
α and IFN-γ-stimulated T reg cells for stage II and stage IV due to small sample size. 
 
Some of the breast cancer patients analyzed had received neo-adjuvant or adjuvant therapy 
when blood was obtained. We determined whether the reduced fold induction of STAT1-
pY701 was a consequence of therapy. We compared breast cancer patients who had received 
therapy to those who did not receive therapy for both Type I and Type II IFN stimuli (Figure 
7 and 8, respectively). Generating p-values > 0.05 for all cell subsets demonstrated no 
significant difference between patients who received neo-adjuvant or adjuvant therapy 
compared to patients who did not undergo therapy. 
 
 

• We have demonstrated there is a defect of IFN signaling in breast cancer patients’ 
peripheral blood leukocytes, regardless of therapy.  We intend to expand our search 
by subjecting leukocytes isolated from breast cancer patients’ axillary lymph nodes 
(ALNs) to Phosflow and observe whether the fold induction of STAT1-pY701 
significantly decreases or increases and possibly, extend it to tumor infiltrating 
leukocytes (TILs) depending on the number of cells we can isolate. 

• Determine the mechanism(s) by which IFN signaling is hindered.   Two approaches 
will be used to address this issue:   

o First, a step-by-step approach to look at phosphorylation events upstream from 
STAT1, such as JAK1, JAK2, TYK2, and IFN receptors.  Currently, we are 
optimizing protocols to use with a new system, Firefly 3000.  Firefly 3000 has 
the ability to quantitate and analyze proteins from a small amount of material.  
Once optimized, we will be able to explore and possibly identify mechanistic 
defects in the immune and tumor cells isolated from breast cancer tumors, 
tumor-draining lymph nodes (TDLNs), and/or peripheral blood leukocytes.    

o Our second approach is to determine whether JAK/STAT signaling cascades 
in other pathways are perturbed in some manner.  We decided to utilize 
Phosflow and stimulate PBMCs with IL-6 and IL-2.  The target cells for IL-6 
stimulation are T cells and B cells, whereas, the target cells for IL-2 
stimulation include T cells, B cells, and NK cells.  IL-6 and IL-2 were chosen 
because both of these stimuli use JAK/STAT pathways and we would like to 
determine if similar players in the IFN signaling cascade are involved in down 
regulation (or up regulation) of response in other pathways.   
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Figure A3.  IFN-γ-Stimulated fold change in pSTAT1-Y701 of PBMC subsets from healthy 
female and healthy male donors with corresponding p-values as measured by Phosflow.  A: 
Lymphocytes, B: CD3 T cells, C: CD19 B cells, D: CD16 Natural Killer cells, and E: T 
regulatory cells 
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Figure A6. IFN-α-Stimulated fold change in STAT1-pY701 in PBMC subsets from 
healthy (  )and breast cancer stages (2- , 3-  , 4- ) with colored corresponding p 
values. PBMC subsets were gated based on surface markers measured by FACS. A:  
Lymphocytes, B: CD3 T cells, C: CD19 B cells, D: CD16 Natural Killer cells, and E: 
T regulatory cells. 
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 Figure A7. IFN-γ-Stimulated fold change in STAT1-pY701 in PBMC subsets from healthy 

( )and breast cancer stages (2- , 3- , and 4- ) with colored corresponding p values. PBMC 
subsets were gated based on surface markers measured by FACS. A: Lymphocytes, B: CD3 T 
cells, C: CD19 B cells, D: CD16 Natural Killer cells, and E: T regulatory cells. 
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Figure A8.  IFN stimulated fold change in pSTAT1-Y701 for PBMCs of breast cancer patients 
who received neo-adjuvant or adjuvant therapy (therapy   ) compared to breast cancer patients 
who did not receive either therapy(no therapy    ) as measured by Phosflow:  A) IFN-α-stimulated 
PBMC subsets for CD3 T cells, CD19 B cells, and CD16 Natural Killer cells with corresponding 
p-values. B) IFN-γ-stimulated PBMC subsets for CD3 T cells, CD19 B cells, and CD16 Natural 
Killer cells with corresponding p-values. 
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Personnel: Lee, Johnson, Dirbas, Schwartz, Yu, Simons. 
 
 
B. Microarray analysis of immune and tumor cells independently 

 
Originally proposed in SOW: 
1. Microarray analysis of gene expression of purified tumor and immune cells, 
isolated from fresh tumor or TDLN samples, and peripheral blood mononuclear cells 
(PBMC) from breast cancer patients. (months 6-60) 
2. Detailed analyses of gene expression data focusing on gene networks and cross-talk 
between tumor and immune cells. (months 12-60) 

 
This project utilizes a systematic approach to study the dynamics between breast cancer and 
the immune responses by directly comparing the gene expression patterns from TDLNs with 
the tumor site and peripheral blood. An increasing number of studies have used microarray to 
profile breast tumor specimens, which in fact represent heterogeneous cell populations 
consisting of tumor cells and tumor infiltrating immune cells. Our strategy is to profile 
purified tumor and immune cells independently, isolated from tumors and/or TDLNs.  
 
1. Summary of sample composition for microarray analysis 
Our initial set of gene expression data will comprise up to 225 samples collected from 30 
newly diagnosed breast cancer patients. These samples include immune cells and/or tumor 
cells from peripheral blood, breast tumor tissues, and TDLNs (tumor free or tumor 
involving). Of these, a total of 13 complete patient sample sets will include tumor cells and 
their paired immune cells from tumor tissues, TDLNs, and blood. These sample sets will 
allow us to compare the gene expression patterns across all three anatomical compartments.  

 
2. Microarray platforms 
A variety of microarray platforms are now available for whole genome gene expression 
profiling. Initially we proposed to use two microarray platforms for this study, Affymetrix 
Human Genome U133 (HG-U133) Set and Agilent Whole Genome Oligo Microarray 44K. 
There is no universally accepted standard for comparing data from different platforms, or 
even within the same array types. As mentioned in the previous progress report, we attempted 
to develop protocols to compare microarray data across groups, labs and platforms. However, 
due to the lack of coherency in array technologies, confusion in interpretation of data within 
and across platforms has often been the norm, and studies of the same biological phenomena 
have, in many cases, led to contradictory results. Furthermore, Agilent has replaced the 
Agilent Whole Genome Oligo Microarray 1×44K with 4×44K, which makes the cross 
platform comparison more difficult. In a pilot study we found different gene expression 
pattern of reference RNA samples between Agilent 1×44K and 4×44K. More importantly, the 
total RNA requirement (200 ng) for multiple platforms will bias the selection of patient 
samples against small breast tumor tissues and/or with less immune cell infiltrations. Hence, 
we have decided to go with a single microarray platform for the entire project. 
 
Tecan recently developed the QuadChamber for fully automated processing of Agilent’s new 
(4×44K) 4-plex gene expression arrays. We performed pilot studies comparing Agilent’s 
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1×44K and 4×44K and found this automated system ensures high quality processing with 
minimal slide handling, minimal ozone exposure, excellent reproducibility and bubble-free 
hybridization. Agilent’s 4-plex microarrays concentrate sample hybridization, so provide 
enhanced sensitivity and allow the detection of even very low abundance transcripts. 
Therefore, Agilent’s new 4-plex Whole Genome Oligo Microarray (4×44K) and Tecan’s 
automated hybridization system will be used for this project.  
 
3. RNA Amplification 
Previously optimized protocol requires 100 ng of total RNA as starting material. Various 
technologies are now available to allow the use of very small amounts of RNA. To take 
advantage of this, we compared the RNA amplification protocols using Amino Allyl 
MessageAmpTM II aRNA Amplification Kit (Ambion, Inc) with TrueLabeling-PicoAMPTM 
Kit (SuperArray). The TrueLabeling-PicoAMPTM kit is able to amplify and label antisense 
RNA from picogram quantities of total RNA. Table 2 lists the typical yields obtained using 
TrueLabeling-PicoAMPTM kit based on the number of immune cells and tumor cells. High 
sensitivity quality control of amplified RNA samples is carried out using the RNA 6000 Nano 
LabChip kit and 2100 Bioanalyzer (Agilent). Using this protocol, we determined that a 
minimum of 5000 immune cells and 3000 tumor cells are sufficient for Agilent 4-plex 
microarray. This produces about 6μg of aminoallyl-cRNA with minimal non-specific 
amplification product, which is enough for 3-4 arrays.  
 

Table 2. Yields of cRNA obtained using TrueLabeling-
PicoAMPTM kit (2-round amplification) 
Cell No. from immune cells from tumor cells 
2,500 8μg 5μg 
5,000 5μg 15μg 
15,000 10μg 30μg 
20,000 15μg 35μg 
25,000 25μg 25μg 
50,000 50μg 55μg 

 
4. Batch difference 
The initial set of microarray analysis comprises up to 450 arrays, with two arrays for each 
sample. The maximal capacity of Tecan automated hybridization system is 48 arrays per 
batch. To minimize batch difference we might encounter, we identified three major factors 
that could potentially introduce batch difference: RNA amplification, Cy3/Cy5 labeling and 
hybridization. We performed a set of microarray experiments designed to quantify the 
influence of the three factors mentioned above. Microarray analysis was carried out using 
total lymphocytes reference samples in various hybridization/amplification/labeling batches 
(a total of 14 arrays). Our data suggest that the amplification batch difference is relatively 
larger than the labeling and hybridization batch difference. Of particular note, the 
amplification batch difference is due to different amount of input RNA.   
 
Our samples have various numbers of cells, ranging from 2,500 to 1 million. Although 
standardization of input RNA material will minimize bias introduced by amplification, the 
quality of the whole data set might be jeopardized by limiting the input RNA to the smallest 
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amount available. Based on the yields of aminoallyl-cRNA using the TrueLabeling-
PicoAMPTM kit, we decided to use as much input total RNA as is available for samples with 
less than 50,000 cells. This will maximize accurate gene expression profile representation. 
The amplification reaches the maximal efficiency with a cell number of 50,000. Increase of 
input RNA thereafter unnecessarily expends limiting reagents at no additional yield 
advantage. Therefore, total RNA is quantitated using Ribogreen (Invitrogen) method for 
samples with cell number above 50,000 and 1 ng of input RNA is used for amplification.  
 
5. Reference RNA 
Agilent’s two-color hybridization allows comparison of two samples labeled with different 
fluorescent dyes on the same microarray. Normalized signals are expressed as the ratio of 
signals from Cy5 experimental and Cy3 reference probes, or vice versa. Use of a common 
reference sample across multiple experiments provides reliable data comparison. A reference 
sample should provide a hybridization signal at as many probe elements as possible. We 
carried out a pilot study to compare the performance of our in house total lymphocyte 
reference RNA and Stratagene’s Universal Human Reference RNA.  Comprised as a 
collection of RNA pooled from ten cell lines, the Stratagene’s UHR RNA has broader gene 
coverage and provides us the ability to cross compare data sets from public domain. 
Stratagene’s UHR RNA is used for the first set of gene expression analysis.
 
6. Protocols developed for Agilent Whole Genome Oligo Microarray 4×44K 
Total RNA is isolated through Trizol method and amplified in two consecutive rounds using 
TrueLabeling-PicoAMPTM kit, followed by the Cy3/Cy5 labeling (Amersham Biosciences 
Corp.) and Tecan automated hybridization according to the Agilent technical manual. 
 

 
Personnel: Lee, Holmes, Johnson, Dirbas, Yu, Simons. A third PhD postdoctoral fellow 
with expertise in bioinformatics, data integration and analysis would greatly enhance 
the success of this project. 
 
 
C. Epigenetic dysregulation

 
Originally proposed in SOW: 
Assess alterations in epigenetic control of gene expression in immune cells (due to 
direct effects of tumor cells or to the general cancer state) isolated from fresh tumor or 
TDLN samples, and peripheral blood mononuclear cells (PBMC) from breast cancer 
patients. This will be done using proprietary technologies from Orion Genomics – 
Methylscope and Methylscreen. 
 

While this remains a promising line of investigation, these analyses require substantial 
amounts of patient materials. Our experience continues to suggest that we do not have 
sufficient numbers of immune cells recovered from patient specimens to fully support these 
higher risk analyses. This stems from the current trends in the surgical management of breast 
cancer patients of removing fewer lymph nodes and patients with smaller tumors being 
detected. Both of these trends lead to smaller and fewer samples from breast cancer patients 
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being available for research purposes, necessitating the need for us to optimize all of our 
assays and focusing on the highest yield experiments. Even with our best efforts, we have 
barely sufficient patient materials for immunological and gene expression analyses – we 
simply do not have sufficient patient materials to pursue this analysis. Hence, we will remove 
this exploratory analysis from our project going forward. Neither funds nor personnel effort 
was budgeted for this exploration, so this will not alter our overall project plans going 
forward.  
 
 
D. Analyzing the geometric relationships and interactions between cancer and immune cells 
in tumors and TDLN

 
Originally proposed in SOW: 
1. Generate high-resolution images of tumor and TDLN sections. (months 0-60)
B. Develop algorithms to identify cells/cell types and assign coordinates. (months 0-
60) 
2. Develop algorithms to assess the spatial arrangement and grouping of tumor and 
immune cells with respect to each other that may have biological significance. This 
will be done in collaboration with a Stanford mathematics professor, Dr. Doron Levy, 
using advanced image analysis and computational geometry techniques. (months 0-
60) 

 
Archived samples of tumor and TDLN from breast cancer patients with at least 5 years of 
clinical follow-up data are being analyzed. Tumor and immune cell markers are identified via 
immunohistochemical (IHC), immunofluorescence (IF) staining, and in-situ hybridization 
(ISH). Images are being acquired using a high-resolution, automated imaging system 
(Olympus and Ludl) with a special spectral imaging system (NuanceTM). Acquired images are 
then analyzed with our custom image analysis software Gemident. This software uses spatial 
statistics and machine learning algorithms to identify cells, cell types, and assign coordinates. 
We are also developing algorithms to assess the spatial arrangement and grouping of tumor 
and immune cells. By performing in situ analysis of tissue, our goal is to understand the 
mechanisms of cancer development by characterizing the spatial interactions between cell 
types. This is done in collaboration with Stanford statistics professor, Dr. Susan Holmes, who 
has expertise in novel image analysis and computational geometry techniques. Over 50 
immune and tumor markers will be eventually be assessed within tumor and TDLN sections. 
 
Thus far, we have optimized 3-color IHC staining combinations to concurrently visualize 
breast cancer cells (via cytokeratin AE1/AE3) and various immune cells within tumor and 
TDLN sections. Key accomplishments of this year include the optimization of 3-color IHC 
staining protocols and integration of the automated imaging system that yield high-resolution 
images (figure D1 and D2), and completion of our custom image analysis software that 
enables us to identify each cell type, its location, and enumerate the total numbers of tumor 
and immune cells within each section (figure D3). 
 
We have initiated large-scale spatial data analysis based on the automated cell type 
identification performed by our software. To date, our statistical analysis has involved 
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quantifying the inter-point distances between cells (figure D4a). We have begun to study the 
geometry of cancer cell intensity by mapping regions of dense tumor intensity (figure D4b).  
Understanding these cellular spatial patterns will allow us to understand the mechanisms of 
cancer development. 
 
The exploratory statistical analysis of cell location data enables us to build a spatial picture of 
the data. Both the individual cell populations of homogeneous type (T cells, dendritic cells, 
cancer cells, others) and the interaction between these populations inform us to the dynamics 
that lead to such a configuration. 
 
For the time being we are trying to model the underlying processes both with marked point 
process models and clustering detection procedures. We are using R and many packages 
available at the Comprehensive R Archive Network (http://cran.r-project.org/). For example, 
DCluster is a package for the detection of spatial clusters of diseases, that can also be used to 
identify and validate cell clustering. The spdep R package  provides basic functions for 
building neighbor lists and spatial weights, tests for spatial autocorrelation for areal data like 
Moran's I statistic, and functions for fitting spatial regression models, such as Spatial 
Autoregressive (SAR) and Conditional Auto Regressive (CAR) models. These models 
assume that the spatial dependence can be described by known weights. 
 
While this work is in progress, we are being to uncover interesting spatial relationships 
between tumor cells, immune cells, and tumor-immune cells. More importantly, these 
relationships can be quantified and used in downstream statistical analyses, including 
relationship with clinical parameters and outcomes. 
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Figure D1. Spectral unmixing of a triple-stained lymph node section by NuanceTM. 
Chromogens used were Vulcan Fast Red (cytokeratin (tumors), red), DAB (CD1a(+)- 
dendritic cells, brown) and Ferangi Blue (CD3(+)-T cells, dark blue). Cellular nuclei were 
counterstained with hematoxylin (light blue). A, An original RGB image of a part of a tissue 
section. B, Images resulting from unmixing of the spectral signals of each chromogen and 
counterstain. C, Reconstructed image with pseudo-colors that allowed a greater distinction of 
the cell populations as compared to the original image. 
 

 
 
 
Figure D2. A whole-slide RGB image of a TDLN section taken by NuanceTM. 
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Figure D3. Examples of object identification within complex images by custom image 
analysis software. A, A reconstructed image of a TDLN section with the tissue area marked in 
green numbers, and stages to be used for phenotype training of the program marked in dark 
green circles. B, Red cells with blue nuclei represent tumor cells, green cells with blue nuclei 
represent T cells, and blue only cells represent other cell populations. After being trained to 
recognize each cell phenotype, the program would identify and mark the centroid locations of 
each identified cell. It then determined the number of each cell phenotype identified in the 
whole image, and the x-y coordinates that represent the location of each cell in the tissue 
section.  
 
A. 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. 
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Figure D4.  A.  Bottom (purple) curve denotes the estimated joint probability distribution 
between a tumor cell to its nearest T-cell neighbor; the top (blue) curve is the theoretical 
distribution if tumor cells and T-cells were spatially independent.  These graphs suggest a 
significant repulsion effect between tumor cells and T-cells;  B. estimated tumor cell intensity 
(number of tumor cells per pixel) 

A.  

 
B. 
 
Personnel: Lee, Holmes, Schwartz, Setiadi, Levic, Holmes, Angeles. 
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E. Synthesizing a useful model of breast cancer through mathematical and computational 
modeling 
 

Originally proposed in SOW: 
To integrate our experimental data and observations into a mathematical model to 
address the dynamics of cancer cells and the immune response in the tumor and lymph 
node. This will ultimately enable us to perform in silico experiments to quickly test 
novel therapeutic strategies for breast cancer. 

 
As a first step to mathematical modeling of data generated from this project on immune 
responses to breast cancer, we developed a basic mathematical model for the dynamics of the 
adaptive immune system during a primary immune response.  The main focus of the model is 
on the T cell-mediated response and particularly on the function of naturally-occurring 
regulatory T cells.  To devise the model, we formulate a system of delay differential 
equations (DDEs) in which the time delays correspond to the lag between the stimulation and 
activation of killer T cells or the durations of T cell divisions.  Each equation corresponds to a 
population of cells or molecular signals that contribute to the development of the overall 
adaptive immune response.  In the model, we consider antigen-presenting cells (APCs), three 
types of T cells (helper, killer, and regulatory), target cells, antigens, and positive and 
negative growth signals.  In addition, we separate the dynamics into two separate 
compartments, the lymph node and the tissue.  The motivation of this paper is to understand 
the dynamics of self/non-self discrimination of T cells and the mechanisms of immune 
regulation. 
 
The primary immune response refers to the first encounter of the adaptive immune system 
with particular non-self antigens.  This response begins when a foreign target enters the tissue 
triggering the innate immune system, which releases a cascade of inflammatory signals.  Prior 
to inflammation, APCs, especially dendritic cells, circulate continually throughout the tissue 
collecting antigen, both self and non-self, and presenting them on their cell surfaces.  Upon 
encountering inflammatory signals, APCs mature and migrate to the lymph node, where they 
begin to stimulate naïve T cells that react to the antigens on the APC surfaces. 
 
These interactions trigger a phase of antigen-specific T cell proliferation that lasts about four 
to ten days depending on the strength of the immune response.  During this phase, killer T 
cells proliferate to thousands of times their original concentration, while helper T cells 
proliferate to a much lesser extent.  Instead, activated helper T cells begin to produce positive 
growth signal, especially IL-2, to maintain the stimulation of proliferating killer T cells. This 
dynamic interaction between APCs, killer T cells, and helper T cells in the lymph node leads 
to a rapid expansion of T cells against specific non-self antigens, while at the same time 
tolerating normal self antigens, which are generally always present in the body. 
 
At some point, the activated killer T cells begin migrating out of the lymph node to destroy 
the infecting agent in the tissue.  A successful immune response results in the elimination, or 
at least in a significant reduction, of the virus or other foreign target.  Ideally, this response 
ends in a rapid contraction of the immune cell population before the development of 
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immunological memory.  For the scope of this paper, our modeling does not extend into the 
dynamics of immunological memory and secondary immune responses.  Instead, we focus the 
regulatory mechanisms that lead to a timely contraction of the immune response as well as an 
ensured tolerance of self antigen during target elimination. 
 
Regulatory T cells are a relatively recent finding in medical research, so not much is 
understood about their regulatory mechanisms or their role in the immune system, except that 
they are essential to prevent auto-immune disease.  However, from recent articles in medical 
literature, we can understand that naturally-occurring regulatory T cells begin in naïve states 
and proliferate in an antigen-specific manner in much the same way as other T cells, 
especially helper T cells.  Furthermore, they suppress mature APCs and activated T cells 
upon contact and secrete negative growth signals to suppress the activity and expansion of 
other T cells.  It is not at first clear whether the regulatory T cell response initiates at the same 
time as the primary T cell response against foreign target or whether it initiates later.  We 
seek to use our mathematical model to better understand this part of the dynamics. 
 
In addition, we also use the model to gain insight into the differences between lymph node 
and tissue in driving the immune response.  For this purpose, we consider the lymph node and 
tissue as separate compartments.  In the body, these organs provide completely different 
environments that significantly affect the rate and duration of interactions between immune 
populations.  In particular, the lymph node has a diameter of approximately one to a few 
millimeters (for mice and humans) and a density of immune cells that is hundreds of times 
more than that in the tissue.  In contrast, the tissue is a much larger region with a size on the 
order of cubic centimeters and for the most part contains activated T cells rather than naïve T 
cells and immature APCs rather than mature APCs. 
 
Based on the interactions discussed above, we formulate our model as a system of DDEs.  As 
a fundamental modeling assumption, we assume that cells have only local information from 
their immediate surroundings and the individual immune cells only exhibit simple responses 
to stimuli.  In other words in our model, individual cells do not possess sophisticated 
programs that autonomously govern long-term developments, such as the progression 
between activation, expansion, and contraction phases.  Alternatively, we use our model to 
demonstrate that these temporal phenomena and “collective decisions” can develop from 
group dynamics emerging from large-scale interactions between various cell populations. 
 
As stated as one of our motivations, we seek to understand the mechanisms of self/non-self 
discrimination.  Recent medical findings show that self/non-self discrimination is not a clear 
cut, black and white procedure, since the body always has some slightly self-reactive T cells 
and even predominantly foreign-reactive T cells may have a slight cross-reactivity with self 
antigen.  To this end, we simultaneously consider the immune response to virus-infected cells 
and the collateral response to self cells. 
 
We demonstrate using numerical simulations that our system can eliminate virus-infected 
cells, which are characterized by a tendency to increase without control (in absence of an 
immune response), while tolerating normal cells, which are characterized by a tendency to 
approach a stable equilibrium population. We experiment with different combinations of T 
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cell reactivities that lead to effective systems and conclude that slightly self-reactive T cells 
can exist within the immune system and are controlled by regulatory cells. 
 
Furthermore in our model, we observe the unexpected phenomenon that CD8+ T cell 
dynamics proceed in two phases.  In the first phase, CD8+ cells remain sequestered in the 
lymph node during a period of rapid proliferation.  During the second phase, the CD8+ 
population emigrates to the tissue, where it quickly destroys the target population. Upon 
closer inspection, we discovered that the transition between the two phases is mediated by 
regulatory T cells.  During the proliferation phase, APCs that have migrated to the lymph 
node persistently stimulate helper T cells to secrete positive growth signal, causing killer T 
cells to continue dividing.  As a result, killer T cells tend to remain in the positive signal-rich 
environment.  Once naturally-occurring regulatory T cells have expanded sufficiently to exert 
a regulatory effect, they induce a transition into the emigration phase. 
 
During the emigration phase, regulatory cells suppress activity in the lymph node by 
consuming positive growth signal and suppressing APCs and helper T cells.  This change in 
environment causes the majority of killer T cells to stop dividing and start emigrating to the 
tissue, where they begin to destroy target cells.  Since naturally-occurring regulatory T cells 
begin at a much smaller concentration than non-regulatory T cells, there is an adequate delay 
between the initiation of the killer T cell response and the regulatory T cell response that 
allows killer T cells to proliferate sufficiently before emigrating to the tissue.  Much later in 
the immune response, regulatory T cells in the lymph node also emigrate to the tissue and 
suppress the remaining T cells that are lingering after target elimination. 
 
The two-phase process results in an effective immune response if the transition between 
phases occurs within an appropriate time window when the killer T cells have expanded 
enough to be effective but not too much to induce a significant collateral impact on normal 
tissue cells.  From our model, we demonstrate that having too many regulatory T cells causes 
a premature transition in which too few killer T cells are generated.  On the other hand, 
having too few or no regulatory T cells causes a late transition in which excess killer T cells 
cause significant damage to self tissue during a prolonged immune response. 
 
Alternatively, an appropriate fraction of regulatory T cells during an immune response causes 
killer T cells to optimally switch from proliferation to emigration phases.  In this situation, 
target cells are destroyed quickly and effectively.  This two-phase dynamic strongly suggests 
the counterintuitive hypothesis that the presence of regulatory cells may actually expedite 
target elimination.  In fact, in some simulations when there are no regulatory T cells, the 
emigration of killer T cells begins too late, allowing the foreign target to expand to higher 
levels before being controlled by the immune response.  So even without considering the 
possible risk to normal self tissue, a small fraction of regulatory T cells seems beneficial for a 
normal immune response against an infecting agent. 
 
This unexpected observation extends further to implying that the immune system benefits 
from having a smaller, but significant regulatory T cell response that initiates simultaneously 
or at most only a couple of days after the start of the non-regulatory immune response.  
Although it is currently hypothesized that non-regulatory cells are primarily foreign-reactive, 
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while regulatory T cells are primarily self-reactive, our simulations show that a system with 
only self-reactive regulatory T cells often does not have an adequate regulatory response to 
control the expanding non-regulatory T cell population.  From this perspective, our model 
strongly supports the alternative hypothesis that naturally-occurring populations of foreign-
reactive regulatory T cells are highly beneficial, and perhaps even necessary, to properly tune 
the proliferation of primed T cells during the course of a normal primary immune response. 
 
One question that frequently occurs in immune modeling is whether apoptosis alone is 
enough to regulate the T cells response and lead to a timely contraction.   
In a model where all immune activity happens in one compartment, it is possible to have an 
immune response that contracts shortly after the absence of foreign-antigen.  The principal 
shortcoming may be that the initial immune response may not initiate as quickly as desired.  
This discrepancy may be accounted for by assuming that T cells have a slower death rate 
upon initial activation, but then transition to a higher death rate after several days due to an 
internal mechanism.  However, regardless of what can be demonstrated in a one-compartment 
model, medical literature makes it clear that most T cell proliferation happens in the lymph 
node. 
 
In our two-compartment model, we discover that apoptosis alone is not enough to ensure a 
timely contraction, because of the vastly different dynamics of the lymph node.  In the lymph 
node, the high concentration of immune cells allows the rapid stimulation and expansion of 
almost every antigen-reactive T cell.  However, these T cells remain quarantined in the lymph 
node and do not easily perceive or respond to changes in the tissue compartment.  
Furthermore, the high concentration of APCs, T cells, and positive growth signal initiates a 
very strong positive feedback loop that needs to be broken to initiate the contraction cycle.  
The presence of regulatory T cells not only provides a mechanism of breaking the positive 
feedback loop, but it also ensures that the non-regulatory T cell population contracts faster 
than would happen due to a passive decay from a constant natural death rate. 
 
In addition to the hypotheses discussed above, our model confirms the current standard 
paradigm that a self-tolerant system must have a mechanism of central tolerance (i.e., 
naturally-occurring regulatory T cells that are present before infection).  Indeed, without a 
sufficient level of naturally-occurring T cells, the immune response will nearly always cause 
very high levels of damage to self tissue while eliminating the foreign target. 
 
Going forward, this model of basic immune regulatory mechanisms will be expanded to 
include tumor cells. Data generated from this project will be added to the model. These 
efforts will begin in year 3, but will be most fruitful in years 4 and 5 when substantial 
amounts of data will be available for input into this model. 
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Figure E1: The model.  A comprehensive T cell diagram.  H, K, and R denote CD4+, CD8+, 
and regulatory T cells, respectively.  Every cell perishes at a natural death rate, which are not 
shown.  Furthermore, all active T cells take up negative signal, which decreases their reaction 
probabilities. 
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Figure E2: The model. A comprehensive APC diagram. The inner cube corresponds to the 
lymph node.  The outer cube corresponds to the tissue.  
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Figure E3: Simulation results: well-regulated immune response without foreign-reactive 
regulatory cells 
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Figure E4: Simulation results: over-regulated immune response without foreign reactive 
regulatory cells 
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Figure E5: Simulation results: CD8+ cells and signals and the lymph node 
 
 
 

 
 
Figure E6: Simulation results: target, antigen, and CD8+ T cells in the tissue 

 
 

Personnel: Lee, Levy, *Kim. *Kim was a PhD graduate student in mathematics who was 
involved in this project. He recently completed his PhD and has moved on to a postdoctoral 
position elsewhere. A third PhD postdoctoral fellow with expertise in bioinformatics, 
data integration and analysis would greatly enhance the success of this project. 
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Overall Personnel 
1. Peter P. Lee, MD – project PI (50% effort on EHSA). 
2. Erich Schwartz, MD, PhD – Stanford Pathology (no salary requested on EHSA). 
3. Denise Johnson, MD and Fred Dirbas, MD – Stanford Surgical Oncology (no salary 
requested on EHSA). 
4. Susan Holmes, PhD – Stanford Statistics (1 month per year, as 33% of 3-month summer 
period). 
5. Doron Levy, PhD – Stanford Mathematics (Year 1: 1 month per year, as 33% of 3-month 
summer period; Years 2-5: 2 months as 66% of summer period). Professor Levy recently 
relocated to the University of Maryland but will stay involved in this project. 
6.  HongXiang Yu, PhD - post-doc 1, 100% effort on EHSA – immunological and microarray 
studies. 
7. Francesca Setiadi, PhD - post-doc 2, 100% effort on EHSA – histology studies, data 
analysis. 
8. Rudy Angeles, graduate student (Stanford Statistics), 100% effort on project but funded by 
fellowship – image analysis and data integration. 
9. Diana Simons - research assistant 1, 100% effort on EHSA – to aid in immunological, 
histology, and microarray studies. 
10. Edina Levic - research assistant 2, 100% effort on EHSA – to aid in patient 
enrollment/consent, sample acquisition and processing. 
11. Peter Kim, graduate student (Stanford Mathematics), 100% effort on project but funded 
by fellowship – data integration and mathematical modeling. Peter recently completed his 
PhD and has moved on to a postdoctoral position elsewhere.  
 
 
KEY RESEARCH ACCOMPLISHMENTS: 

 Recruited 93 breast cancer patients into this study – acquired tumor, TDLN, and blood 
samples for analyses. 

 Finalized protocols to maximize recovery of immune cells and tumor cells from tumor 
and lymph node specimens. 

 Optimized methods for analysis of fresh and archive samples by flow cytometry, 
function assays, and DNA microarray analysis to study immune and tumor cells 
within tumor and TDLN specimens. 

 Preliminary analysis suggests that there are functional abnormalities in B cells, CD8 T 
cells, and CD4 T cells from TDLNs as compared with peripheral blood. 

 Demonstrated a defect in IFN signaling in peripheral blood lymphocytes from breast 
cancer patients. 

 Over 50 samples have been processed for gene expression analysis by microarrays, 
which is on-going. We expect to see interesting results in year 3. 

 Optimized 3-color immunohistochemical (IHC) staining panels for analysis of 
archived tumor and TDLN specimens. Over 100 samples are being analyzed. 

 Developed custom image analysis software (Gemident) to identify each cell, cell type, 
location, and relate cell populations by distances and geometric patterns. 

 Developed a mathematical model of immune regulatory mechanisms as a first step to 
modeling immune responses to breast cancer.  
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Outline of the project plan for the next 12 month 

o Continue recruiting patients into study and acquiring samples. 
o Continue functional assays of lymphocytes from tumor, TDLNs, and peripheral blood. 
o Complete microarray analysis of patient sample sets. Each set includes tumor cells, 

tumor infiltrating immune cells, immune cells from TDLN, and immune cells from 
blood. 

o Analyze IFN signaling in lymphocytes from TDLNs and tumor, as compared to those 
in peripheral blood. Determine extent of signaling abnormalities and potential 
mechanism of IFN signaling defect in breast cancer. 

o Continue histological analysis of tumor and TDLN tissue sections, and analyze 
geometrical relationships between cell populations using novel tools and techniques 
that we developed. 

o Utilize biological data generated in this project in the immune regulatory network 
model that we are developing. 

 
REPORTABLE OUTCOMES: On-going from efforts from this year. 
 
CONCLUSIONS: 
In year 2, we made early progress in multiple areas of this project. We have an efficient 
system in place to recruit patients into this study and procure their samples. However, limited 
numbers of subjects available and limited amounts of clinical materials available from each 
subject remain major challenges to the success of this project – we continually attempt to 
address and solve this issue. We have developed a powerful set of immunological assays and 
molecular tools to study these samples in greater detail than previously possible. We are 
constantly striving to minimize the numbers of cells we need to generate useful data, and 
have to make decisions to pursue only the most promising assays with many samples. This is 
illustrated by our decision to not pursue the epigenetic studies that we originally proposed, as 
there are simply too few cells available for this exploratory analysis. We are beginning to 
uncover dramatic changes in the immune cell populations within tumors, TDLNs, and 
peripheral blood from breast cancer patients. These will provide important insights into how 
breast cancer alters the host immune system. We look forward in the coming year to build 
upon the early data we are generating to come up with meaningful observations and insights 
into the immunobiology of breast cancer. In the coming year and beyond, we will also begin 
to make progress on the systems biology that will ultimately position us for the 
immunotherapy of breast cancer. 
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APPENDICES:  None at this time. 
 
SUPPORTING DATA: Tables and figures are integrated into the text above. 
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